<p style='text-indent:20px;'>For real numbers <inline-formula><tex-math id="M1">\begin{document}$ a,q\geq 0 $\end{document}</tex-math></inline-formula> and a weight <inline-formula><tex-math id="M2">\begin{document}$ \varrho(x) = 1/(1+x)^q $\end{document}</tex-math></inline-formula>, the author provides necessary and sufficient conditions for a function <inline-formula><tex-math id="M3">\begin{document}$ f\in C[0,\infty) $\end{document}</tex-math></inline-formula> in order to <inline-formula><tex-math id="M4">\begin{document}$ \sup_{x\geq 0}\mid \varrho(x)(B_n^a(f,x)-f(x))\mid \to 0 $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M5">\begin{document}$ n\to \infty $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M6">\begin{document}$ B_n^a(f) $\end{document}</tex-math></inline-formula> is the Mihesan operator. In particular, it is proved that Mihesan operators behave similar to the classical Baskakov operators.</p>