This paper introduces EIF-SlideWindow, a novel enhancement of the Extended Information Filter (EIF) algorithm for Simultaneous Localization and Mapping (SLAM). Traditional EIF-SLAM, while effective in many scenarios, struggles with inaccuracies in highly non-linear systems or environments characterized by significant non-Gaussian noise. Moreover, the computational complexity of EIF/EKF-SLAM scales with the size of the environment, often resulting in performance bottlenecks. Our proposed EIF-SlideWindow approach addresses these limitations by maintaining a fixed-size information matrix and vector, ensuring constant-time processing per robot step, regardless of trajectory length. This is achieved through a sliding window mechanism centered on the robot’s pose, where older landmarks are systematically replaced by newer ones. We assess the effectiveness of EIF-SlideWindow using simulated data and demonstrate that it outperforms standard EIF/EKF-SLAM in both accuracy and efficiency. Additionally, our implementation leverages PyTorch for matrix operations, enabling efficient execution on both CPU and GPU. Additionally, the code for this approach is made available for further exploration and development.