Engineering design is a complex process to find a suitable trade-off among different, and sometimes conflicting, design specifications. In reality, these requirements can be often considered as constraints of the design problem, that can be defined in terms of performance measures or geometrical characteristics of the device under study. In this paper, a new design space exploration methodology is presented for discovering feasible regions in the design space, where the term feasible region indicates the set of all design configurations satisfying all constraints of the design problem. The proposed method is based on Gaussian Process metamodels to estimate the feasible region and leverages a information-based adaptive sampling technique to sequentially refine the prediction accuracy, which is applicable for multiple constraints problems. In order to efficiently stop the adaptive sampling process, a novel framework to estimate the metamodel's prediction accuracy is proposed. The efficiency, accuracy and robustness of the proposed approach are compared with state-of-art techniques on suitable benchmark problems and practical engineering examples.