Epidermal growth factor receptor (EGFR) is the key to targeted therapy with tyrosine kinase inhibitors in lung cancer. Traditional identification of EGFR mutation status requires biopsy and sequence testing, which may not be suitable for certain groups who cannot perform biopsy. In this paper, using easily accessible and non-invasive CT images, the residual neural network (ResNet) with mixed loss based on batch training technique is proposed for identification of EGFR mutation status in lung cancer. In this model, the ResNet is regarded as the baseline for feature extraction to avoid the gradient disappearance. Besides, a new mixed loss based on the batch similarity and the cross entropy is proposed to guide the network to better learn the model parameters. The proposed mixed loss utilizes the similarity among batch samples to evaluate the distribution of training data, which can reduce the similarity of different classes and the difference of the same classes. In the experiments, VGG16Net, DenseNet, ResNet18, ResNet34 and ResNet50 models with the mixed loss are trained on the public CT dataset with 155 patients including EGFR mutation status from TCIA. The trained networks are employed to the collected preoperative CT dataset with 56 patients from the cooperative hospital for validating the efficiency of the proposed models. Experimental results show that the proposed models are more appropriate and effective on the lung cancer dataset for identifying the EGFR mutation status. In these models, the ResNet34 with mixed loss is optimal (accuracy = 81.58%, AUC = 0.8861, sensitivity = 80.02%, specificity = 82.90%).