2024
DOI: 10.1051/e3sconf/202447502012
|View full text |Cite
|
Sign up to set email alerts
|

Batik classification using KNN algorithm and GLCM features extraction

David Wijaya,
Anastasia Rita Widiarti

Abstract: Batik is one of the Indonesian cultures that has been recognized by UNESCO as an intellectual right of Indonesia. The popularity of batik internationally raises concerns about the Indonesian people’s understanding of batik if Indonesian people only refer to all types of batik just as ‘batik’. By utilizing K-Nearest Neighbour (KNN) algorithm which is a simple classification algorithm, then a system can be created that can classify batik types. The first step of KNN is training, which stores each training patter… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?