Vanadium-based oxides are intriguing electrode materials in aqueous electrochemical systems owing to their low cost and high theoretical capacity for alkali storage, especially lithium (Li) ions. However, a sequence of phase transformations and irreversible structure distortion upon Li-ion intercalation causes structural instability and has been a lingering problem for vanadium oxide electrodes. Here, we investigate lithium vanadate (Li− V 3 O 8 ) for aqueous Li-ion intercalation and deintercalation processes. Unlike its crystalline V 2 O 5 polymorph, Li−V 3 O 8 retains monophasic lithiation, which is attributed to its disordered crystalline nature and large interplanar distance. Importantly, we show a unique and reversible sequence of disorderto-order structural transition induced by the extent of lithiation, which indicates sequential interlayer and intralayer lithiation process, and vice versa in delithiation process, supported by electrokinetic analysis, in situ X-ray diffraction (XRD), and Debye scattering simulations. The absence of distortive phase transitions and multilithiation pathways facilitates Li-ion diffusion across the vanadate electrode materials to improve storage capacity. This work opens a new dimension for vanadium-based disordered oxides, accelerating the development of low-cost, aqueous electrochemical systems.