The paper deals with a grid-connected single-phase battery charger integrated with photovoltaic generators (PVGs). The circuit topology consists of a multilevel architecture based on a Cascaded H-Bridge (CHB) rectifier. Its main task is to charge the batteries, primarily from the PVGs, by also assuring to keep their state-of-charge (SOC) balanced. Nevertheless, when the battery SOC overcomes a predefined upper limit, beyond which the charging process could be interrupted, the available PV power can no longer be transferred to the batteries. Therefore, to avoid an undesired curtailment of PV power production, this latter can be supplied to the grid by inverting the system operation. The paper shows how to achieve this result by implementing a dedicated control action based on a multi-step procedure. Numerical investigations are carried out on a 19-level CHB converter implemented in the PLECS environment to validate the feasibility and effectiveness of the proposed control technique.