Bayesian Analysis Reveals the Key to Extracting Pair Potentials from Neutron Scattering Data
Brennon L. Shanks,
Harry W. Sullivan,
Michael P. Hoepfner
Abstract:Learning interaction potentials from the structure factor is frequently seen as impractical due to accuracy constraints of neutron and X-ray scattering experiments. This study reexamines this historic inverse problem using Bayesian inference and probabilistic machine learning on a Mie fluid to elucidate how measurement noise impacts the accuracy of recovered potentials. To perform reliable potential reconstruction, we recommend that scattering data must have noise smaller than 0.005 up to ∼30 Å −1 at a standar… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.