Bayesian Approach to Inverse Time-harmonic Acoustic Scattering from Sound-soft Obstacles with Phaseless Data
Zhipeng Yang,
Xinping Gui,
Ju Ming
et al.
Abstract:This paper concerns the Bayesian approach to inverse acoustic scattering problems of inferring the position and shape of a sound-soft obstacle from phaseless far-field data generated by point source waves. To improve the convergence rate, we use the Gibbs sampling and preconditioned Crank-Nicolson (pCN) algorithm with random proposal variance to implement the Markov chain Monte Carlo (MCMC) method. This usually leads to heavy computational cost, since the unknown obstacle is parameterized in high dimensions. T… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.