My study underpins that picophytoplankton are important contributors to primary production, especially during the winter-spring transition (Paper I and III) and autumn (Paper V). They boosted the growth of heterotrophic microorganisms before the onset of the diatom spring bloom in the Subarctic Atlantic (Paper I) and dominated the phytoplankton biomass in the high turbid parts of a NE Greenland fjord influenced by glacial meltwater (Paper V). Picophytoplankton were better adapted to low light conditions and demonstrated higher growth rates, than larger phytoplankton (Paper I, II, III, V). In the Polar-influenced water near Greenland, Synechococcus were negligible, while in the Atlantic influenced waters picoeukaryotes and Synechococcus were often equally abundant and the latter dominated on several occasions during autumn and winter (Paper I and III). Unexpectedly, abundances of Synechococcus were as high at 65°N as at 79°N, and molecular analysis suggests the presence of new clades specially adapted to Arctic conditions. Bacteria were generally rather carbon-than nutrient limited, and their abundance increased rapidly in response to the pre-bloom picophytoplankton production of labile carbon in both the Arctic and Subarctic (Paper I and V). In NE Greenland the terrestrial DOM supplied from the Greenland ice sheet proved to be highly bioavailable compared to the 7 autochthonous fjord DOM (Paper IV). The in situ changes in DOM, which were examined via fluorescence signal of different DOM components (FDOM), surprisingly demonstrated that the highest net-growth of bacteria was not coupled to the labile glacial runoff in the surface, but rather to sub-surface the humic-DOM, commonly considered to be refractory. This may be explained by the presence of specific dominating taxa of bacteria that had the ability to degrade humic-DOM (Paper V).Across regions, HNF exerted strong control of picophytoplankton and bacteria (Paper I, II, III, V). HNF grew significantly faster than microzooplankton and were therefore less affected by mixing and relatively more important grazers than their micro-sized counterparts in well-mixed water columns (Paper I and II). HNF larger than 5µm controlled picophytoplankton particularly in the early productive season, while small HNF (3-5µm) mainly kept bacteria in check in autumn (Paper III, V). In conclusion, the studies underline that pico-sized plankton play a fundamental part in the carbon transfer in high latitude ecosystems both as primary producers and via the microbial loop. Picophytoplankton appeared better adapted than larger phytoplankton to low light conditions, and bacteria were capable of degrading terrestrial derived DOM, however, these abilities are highly community specific. The data suggest that a change in mixing patters will affect the microbial food structure and that shifts in coastal microbial community composition should be anticipated with increased runoff.
8
List of publicationsThe thesis is based on preliminary data and the following fived papers referred to in the t...