2021
DOI: 10.48550/arxiv.2103.15520
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Bayesian Estimation of Graph Signals

Ariel Kroizer,
Tirza Routtenberg,
Yonina C. Eldar

Abstract: We consider the problem of recovering random graph signals from nonlinear measurements. For this case, closed-form Bayesian estimators are usually intractable and even numerical evaluation of these estimators may be hard to compute for large networks. In this paper, we propose a graph signal processing (GSP) framework for random graph signal recovery that utilizes the information of the structure behind the data. First, we develop the GSP-linear minimum mean-squared-error (GSP-LMMSE) estimator, which minimizes… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 42 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?