When the sample size in a certain domain is too small to produce adequate information, small area model with random effects is usually used. Also, if we do not consider an inherent pattern which data possess, it considerably affects inference. In this paper, we mainly focus on modeling to handle increased variation of the Current Population Survey (CPS) median income as the Internal Revenue Service (IRS) mean income increases. In a hierarchical Bayesian framework, most estimations are carried out through the Gibbs sampler while the grid method is used to generate parameters from non-standard form. Numerical study indicates that the performance of proposed model is better than that of CPS method in terms of four comparison measurements.