Prior knowledge of source size, shape, and radiation process, and of receiver noise correlations are incorporated in a linear minimum mean-squared error (MMSE) imaging estimator. Its resolution operator and expected squared estimation error are derived and are computed for discrete linear source and receive arrays. These calculations give practical insight into the effects of source size, structure, surface-brightness-to-receive-noise ratio, and receiver geometry on imaging performance. Super-resolution behavior occurs as the natural result of MMSE estimation in regimes where the ratio of source-surface-brightness-to-receiver noise level is large. The expected squared estimation error is a useful tool in array design.