2021
DOI: 10.1155/2021/1777469
|View full text |Cite
|
Sign up to set email alerts
|

Bayesian Estimation of Partially Linear Additive Spatial Autoregressive Models with P-Splines

Abstract: In this paper, we aim to develop a partially linear additive spatial autoregressive model (PLASARM), which is a generalization of the partially linear additive model and spatial autoregressive model. It can be used to simultaneously evaluate the linear and nonlinear effects of the covariates on the response for spatial data. To estimate the unknown parameters and approximate nonparametric functions by Bayesian P-splines, we develop a Bayesian Markov Chain Monte Carlo approach to estimate the PLASARM and design… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 55 publications
0
0
0
Order By: Relevance