We present a feature enhancement method that uses neural networks (NNs) to map the reverberant feature in a log-melspectral domain to its corresponding anechoic feature. The mapping is done by cascade NNs trained using Cascade2 algorithm with an implementation of segment-based normalization. Experiments using speaker identification (SID) and automatic speech recognition (ASR) systems were conducted to evaluate the method. The experiments of SID system was conducted by using our own simulated and real reverberant datasets, while the CENSREC-4 evaluation framework was used as the evaluation for the ASR system. The proposed method could remarkably improve the performance of both systems by using limited stereo data and low speaker-variant data as the training data. From the evaluation using SID, we reached 26.0% and 34.8% of error rate reduction (ERR) relative to the baseline by using simulated and real data, respectively, by using only one pair of utterances for matched condition cases. Then, by using combined dataset containing 15 pairs of utterances by one speaker from three positions in a room, we could reach 93.7% of average identification rate (three known and two unknown positions), which was 42.2% of ERR relative to the use of cepstral mean normalization (CMN). From the evaluation using ASR, by using 40 pairs of utterances as the NN training data, we could reach 78.4% of ERR relative to the baseline by using simulated utterances by five speakers. Moreover, we could reach 75.4% and 71.6% of ERR relative to the baseline by using real utterances by five speakers and one speaker, respectively.