Bayesian Feature Extraction for Two-Part Latent Variable Model with Polytomous Manifestations
Qi Zhang,
Yi-Hui Zhang,
And Yemao Xia
Abstract:Semi-continuous data are very common in the social science and economics. In this paper, a Bayesian variable selection procedure is developed to assess the influence of exogenous factors including observed and unobserved on the semi-continuous data. Our formulation is based on the two-part latent variable model with polytomous response. We consider two schemes for the penalties of regression coefficients and factor loadings: the Bayesian spike and slab bimodal prior and the Bayesian lasso prior. Within the Bay… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.