Bayesian Learning in an Affine GARCH Model with Application to Portfolio Optimization
Marcos Escobar-Anel,
Max Speck,
Rudi Zagst
Abstract:This paper develops a methodology to accommodate uncertainty in a GARCH model with the goal of improving portfolio decisions via Bayesian learning. Given the abundant evidence of uncertainty in estimating expected returns, we focus our analyses on the single parameter driving expected returns. After deriving an Uncertainty-Implied GARCH (UI-GARCH) model, we investigate how learning about uncertainty affects investments in a dynamic portfolio optimization problem. We consider an investor with constant relative … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.