Bayesian Lower and Upper Estimates for Ether Option Prices with Conditional Heteroscedasticity and Model Uncertainty
Tak Kuen Siu
Abstract:This paper aims to leverage Bayesian nonlinear expectations to construct Bayesian lower and upper estimates for prices of Ether options, that is, options written on Ethereum, with conditional heteroscedasticity and model uncertainty. Specifically, a discrete-time generalized conditional autoregressive heteroscedastic (GARCH) model is used to incorporate conditional heteroscedasticity in the logarithmic returns of Ethereum, and Bayesian nonlinear expectations are adopted to introduce model uncertainty, or ambig… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.