2002
DOI: 10.1086/338940
|View full text |Cite
|
Sign up to set email alerts
|

Bayesian Networks and the Problem of Unreliable Instruments

Abstract: Original citation:Bovens, Luc and Hartmann, Stephan (2002) We appeal to the theory of Bayesian Networks to model different strategies for obtaining confirmation for a hypothesis from experimental test results provided by less than fully reliable instruments. In particular, we consider (i) repeated measurements of a single test consequence of the hypothesis, (ii) measurements of multiple test consequences of the hypothesis, (iii) theoretical support for the reliability of the instrument, and (iv) calibration … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
31
0
1

Year Published

2002
2002
2018
2018

Publication Types

Select...
5
4

Relationship

3
6

Authors

Journals

citations
Cited by 44 publications
(32 citation statements)
references
References 11 publications
0
31
0
1
Order By: Relevance
“…Dies ist offenbar nur dann möglich, wenn empirische Faktoren mit einbezogen werden. In Bovens and Hartmann (2002) wird gezeigt, wie auf diese Weise eine Bestätigungstheorie für nicht vollkommen zuverlässige Messinstrumente mit Hilfe von Methoden aus der Künstlichen Intelligenz (v.a. der Theorie Bayesianischer Netzwerke) formuliert werden kann.…”
Section: Empirische Und Normative Wissenschaftstheorieunclassified
“…Dies ist offenbar nur dann möglich, wenn empirische Faktoren mit einbezogen werden. In Bovens and Hartmann (2002) wird gezeigt, wie auf diese Weise eine Bestätigungstheorie für nicht vollkommen zuverlässige Messinstrumente mit Hilfe von Methoden aus der Künstlichen Intelligenz (v.a. der Theorie Bayesianischer Netzwerke) formuliert werden kann.…”
Section: Empirische Und Normative Wissenschaftstheorieunclassified
“…And indeed, Gillies himself points out that Bayesian Networks can also be applied if the probabilities in question are objective. Hence, even if Bayesian Networks were created within the tradition of subjective Bayesianism, the theory of Bayesian Networks itself is neutral with respect to the interpretation of probability (Bovens andHartmann 2002, Williamson 2001). In the first place, Bayesian Networks are a highly efficient tool to represent and manipulate probabilistic structures, irrespective of how the probabilities are interpreted.…”
Section: The Philosophical Implications Of Aimentioning
confidence: 99%
“…Though we do not have the space here to address such issues, such issues clearly deserve further exploration. (For further discussion see Bovens and Hartmann, . )…”
mentioning
confidence: 99%