'But, as you have already pointed out, we do not need any more disjointed clues,' said Bartholomew. 'That has been our problem all along: we have a mass of small facts and small scraps of information, but we are unable to make any sense out of them. The last thing we need is more.' Susanna Gregory, A Summer of Discontent
IntroductionToday's data analysts and modellers are in the luxurious position of being able to more closely describe, estimate, predict and infer about complex systems of interest, thanks to ever more powerful computational methods but also wider ranges of modelling distributions. Mixture models constitute a fascinating illustration of these aspects: while within a parametric family, they offer malleable approximations in non-parametric settings; although based on standard distributions, they pose highly complex computational challenges; and they are both easy to constrain to meet identifiability requirements and fall within the class of ill-posed problems. They also provide an endless benchmark for assessing new techniques, from the EM algorithm to reversible jump methodology. In particular, they exemplify the