Different modes of selection in dogs were studied with a special focus on the availability of disease information. Canine hip dysplasia (CHD) in the German shepherd dog was used as an example. The study was performed using a simulation model, comparing cases when selection was based on phenotype, true or predicted breeding value, or genomic breeding value. The parameters in the simulation model were drawn from the real population data. The data on all parents and 40% of their progeny were assumed to be available for the genetic evaluation carried out by Gibbs sampling. With respect to the use of disease records on progeny, three scenarios were considered: random exclusion of disease data (no restrictions, N), general exclusion of disease data (G) and exclusion of disease data for popular sires (P). One round of selection was considered, and the response was expressed as change of mean CHD score, proportion of dogs scored as normal, proportion of dogs scored as clearly affected and true mean breeding value in progeny of popular sires in comparison with all sires. When no restrictions on data were applied, selection on breeding value was three times more efficient than when some systematic exclusion was practised. Higher selection response than in the exclusion cases was achieved by selecting on the basis of genomic breeding value and CHD score. Genomic selection would therefore be the method of choice in the future.