2022
DOI: 10.48550/arxiv.2210.09181
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Bayesian Projection Pursuit Regression

Abstract: In projection pursuit regression (PPR), an unknown response function is approximated by the sum of M "ridge functions," which are flexible functions of one-dimensional projections of a multivariate input space. Traditionally, optimization routines are used to estimate the projection directions and ridge functions via a sequential algorithm, and M is typically chosen via cross-validation. We introduce the first Bayesian version of PPR, which has the benefit of accurate uncertainty quantification. To learn the p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?