In early drug development, especially when studying new mechanisms of action or in new disease areas, little is known about the targeted or anticipated treatment effect or variability estimates. Adaptive designs that allow for early stopping but also use interim data to adapt the sample size have been proposed as a practical way of dealing with these uncertainties. Predictive power and conditional power are two commonly mentioned techniques that allow predictions of what will happen at the end of the trial based on the interim data. Decisions about stopping or continuing the trial can then be based on these predictions. However, unless the user of these statistics has a deep understanding of their characteristics important pitfalls may be encountered, especially with the use of predictive power. The aim of this paper is to highlight these potential pitfalls. It is critical that statisticians understand the fundamental differences between predictive power and conditional power as they can have dramatic effects on decision making at the interim stage, especially if used to re-evaluate the sample size. The use of predictive power can lead to much larger sample sizes than either conditional power or standard sample size calculations. One crucial difference is that predictive power takes account of all uncertainty, parts of which are ignored by standard sample size calculations and conditional power. By comparing the characteristics of each of these statistics we highlight important characteristics of predictive power that experimenters need to be aware of when using this approach.