2013
DOI: 10.1177/1471082x13480650
|View full text |Cite
|
Sign up to set email alerts
|

Bayesian semiparametric additive quantile regression

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

2
75
0

Year Published

2015
2015
2022
2022

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 71 publications
(77 citation statements)
references
References 35 publications
2
75
0
Order By: Relevance
“…The ALD is a real‐valued continuous distribution characterized by location, precision, and skewness parameters μ , δ 2 , and τ ; by setting μ = 0 to ensure Q ϵ ( τ ) = 0, the density of ϵ is written explicitly as f(ϵ)=τ(1τ)δ2exp{}δ2ϵ[]τdouble-struckI(ϵ<0), where double-struckI(·) denotes the indicator function. Recent empirical findings support the use of ALD even though it may fail to accurately represent the true error distribution. As such, the ALD should be regarded as a ‘working likelihood’ that yields valid estimates of conditional quantiles rather than a true depiction of the underlying data‐generating mechanism .…”
Section: Spatiotemporal Quantile Regression Modelmentioning
confidence: 99%
See 2 more Smart Citations
“…The ALD is a real‐valued continuous distribution characterized by location, precision, and skewness parameters μ , δ 2 , and τ ; by setting μ = 0 to ensure Q ϵ ( τ ) = 0, the density of ϵ is written explicitly as f(ϵ)=τ(1τ)δ2exp{}δ2ϵ[]τdouble-struckI(ϵ<0), where double-struckI(·) denotes the indicator function. Recent empirical findings support the use of ALD even though it may fail to accurately represent the true error distribution. As such, the ALD should be regarded as a ‘working likelihood’ that yields valid estimates of conditional quantiles rather than a true depiction of the underlying data‐generating mechanism .…”
Section: Spatiotemporal Quantile Regression Modelmentioning
confidence: 99%
“…Like Waldmann et al . , we adopt a Bayesian modeling approach based on the asymmetric Laplace distribution (ALD), which we regard as a ‘working likelihood’ that yields consistent posterior estimates of conditional quantiles while providing efficient computation based solely on closed‐form full conditionals. Unlike Waldmann et al .…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Another avenue is to introduce dependence via random intercepts, as in Koenker (2004). Waldmann et al (2013) and Yue and Rue (2011) assumed asymmetric Laplace errors and included a random subject effect in the location parameter. Presenting separate methodology for marginal and conditional inference, Reich, Bondell and Wang (2010) accounted for within-cluster dependence via random intercepts and flexibly modeled the density using an infinite mixture of normals.…”
Section: Introductionmentioning
confidence: 99%
“…Therefore, the approach has been useful in many applications (e.g. Yu et al 2005;Yue and Rue 2011;Benoit and Van den Poel 2012;Alhamzawi and Yu 2013;Waldmann et al 2013). …”
Section: Introductionmentioning
confidence: 99%