Bayesian Structure Learning for Climate Model Evaluation
Terence J. O'Kane,
Dylan Harries,
Mark A. Collier
Abstract:A Bayesian structure learning approach is employed to compare and contrast interactions between the major climate teleconnections over the recent past as revealed in reanalyses and climate model simulations from leading Meteorological Centers. In a previous study, the authors demonstrated a general framework using homogeneous Dynamic Bayesian Network models constructed from reanalyzed time series of empirical climate indices to compare probabilistic graphical models. Reversible jump Markov Chain Monte Carlo is… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.