(2015) 'A Bayesian mixed shrinkage prior procedure for spatialstochastic basis selection and evaluation of gPC expansions : applications to elliptic SPDEs.', Journal of computational physics., 284 . pp. 528-546. Further information on publisher's website:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
AbstractWe propose a new fully Bayesian method to efficiently obtain the spectral representation of a spatial random field, which can conduct spatial-stochastic basis selection and evaluation of generalized Polynomial Chaos (gPC) expansions when the number of the available basis functions is significantly larger than the size of the training data-set. We develop a fully Bayesian stochastic procedure, called mixed shrinkage prior (MSP), which performs both basis selection and coefficient evaluation simultaneously. MSP involves assigning a prior probability on the gPC structure and assigning conjugate priors on the expansion coefficients that can be thought of as mixtures of Ridge-LASSO shrinkage priors, in augmented form. The method offers a number of advantages over existing compressive sensing methods in gPC literature, such that it recovers possible sparse structures in both stochastic and spatial domains while the resulted expansion can be re-used directly to economically obtain results at any spatial input values. Yet, it inherits all the advantages of Bayesian model uncertainty methods, e.g. accounts for uncertainty about basis significance and provides interval estimation through posterior distributions. A unique highlight of the MSP procedure is that it can address heterogeneous sparsity in the spatial domain for different random dimensions. Furthermore, it yields a compromise between Ridge and LASSO regressions, and hence combines a weak (l 2 -norm) and strong (l 1 -norm) shrinkage, in an adaptive, data-driven manner. We demonstrate the good performance of the proposed method, and compare it against other existing compressive sensing ones on elliptic stochastic partial differential equations.