“…In the literature, many wavelet decompositions and extensions have been reported offering different features in order to provide sparse image representations. For instance, decompositions onto orthonormal dyadic wavelet bases (Daubechies, 1988) including the Haar transform (Haar, 1910) as a special simple case or decompositions onto biorthogonal dyadic wavelets (Cohen et al, 1992), M-band wavelet representations (Steffen et al, 1993) and wavelet packet representations (Coifman and Wickerhauser, 1992) have been extensively investigated in image denoising (Donoho and Johnstone, 1995;Leporini and Pesquet, 2001;Mueller and Vidakovic, 1999;Heurta, 2005;Daubechies et al, 2004;Daubechies and Teschke, 2005) and deconvolution (Daubechies et al, 2004;Daubechies and Teschke, 2005;Vonesch and Unser, 2008;Chaux et al, 2007). In medical imaging, wavelet decompositions have also been widely used for image denoising (Weaver et al, 1991;Wang and Haomin, 2006;Pizurica et al, 2006), coil sensitivity map estimation and encoding schemes (Lin et al, 2003;Gelman and Wood, 1996;Wendt et al, 1998) in MRI, activation detection in fMRI (Ruttimann et al, 1998;Meyer, 2003;Van De Ville et al, 2004;Van De Ville et al, 2006), tissue characterization in ultrasound imaging (Mojsilovic et al, 1998) and tomographic reconstruction (Olson, 1992).…”