Breast cancer is one of the most often diagnosed cancers in women, and identifying breast cancer histological images is an essential challenge in automated pathology analysis. According to research, the global BrC is around 12% of all cancer cases. Furthermore, around 25% of women suffer from BrC. Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. Using a BreakHis dataset, we demonstrated in this work the viability of automatically identifying and classifying BrC. The first stage is pre-processing, which employs an Adaptive Switching Modified Decision Based Unsymmetrical Trimmed Median Filter (ASMDBUTMF) to remove high-density noise. After the image has been pre-processed, it is segmented using the Thresholding Level set approach. Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. The suggested strategy facilitates the acquisition of precise functionality attributes, hence simplifying the detection procedure. Additionally, it aids in resolving problems pertaining to global optimization. Following the selection, the best characteristics proceed to the categorization procedure. A DL classifier called the Conditional Variation Autoencoder is used to discriminate between cancerous and benign tumors while categorizing them. Consequently, a classification accuracy of 99.4%, Precision of 99.2%, Recall of 99.1%, F- score of 99%, Specificity of 99.14%, FDR of 0.54, FNR of 0.001, FPR of 0.002, MCC of 0.98 and NPV of 0.99 were obtained using the proposed approach. Furthermore, compared to other research using the current BreakHis dataset, the results of our research are more desirable.