This paper studies the problem of zero-short sketchbased image retrieval (ZS-SBIR), however with two significant differentiators to prior art (i) we tackle all variants (inter-category, intra-category, and cross datasets) of ZS-SBIR with just one network ("everything"), and (ii) we would really like to understand how this sketch-photo matching operates ("explainable"). Our key innovation lies with the realization that such a cross-modal matching problem could be reduced to comparisons of groups of key local patches -akin to the seasoned "bag-of-words" paradigm. Just with this change, we are able to achieve both of the aforementioned goals, with the added benefit of no longer requiring external semantic knowledge. Technically, ours is a transformer-based cross-modal network, with three novel components (i) a self-attention module with a learnable tokenizer to produce visual tokens that correspond to the most informative local regions, (ii) a cross-attention module to compute local correspondences between the visual tokens across two modalities, and finally (iii) a kernel-based relation network to assemble local putative matches and produce an overall similarity metric for a sketch-photo pair. Experiments show ours indeed delivers superior performances across all ZS-SBIR settings. The all important explainable goal is elegantly achieved by visualizing crossmodal token correspondences, and for the first time, via sketch to photo synthesis by universal replacement of all matched photo patches. Code and model are available at https://github.com/buptLinfy/ZSE-SBIR.