Indirect transmission of pathogens can pose major risks to wildlife, yet the presence and persistence of wildlife pathogens in the environment has been little studied. Beak and feather disease virus (BFDV) is of global conservation concern: it can infect all members of the Psittaciformes, one of the most threatened bird orders, with infection often being lethal. Indirect transmission of BFDV through contaminated nest hollows has been proposed as a major infection source. However, data on whether and for how long nest sites in the wild remain contaminated have been absent. We determined the BFDV status of birds (parents and nestlings) for 82 nests of Crimson Rosellas, Platycercus elegans and Eastern Rosellas, Platycercus eximius. In 11 of these nests (13.4%, 95% confidence interval 6.9–22.7), we found an infected parent or nestling. Using nest swabs, we then compared BFDV presence at three points in time (before, during and after breeding) in three groups of nest boxes. These were nest boxes occupied by infected birds, and two control groups (nest boxes occupied by uninfected birds, and unoccupied nest boxes). Detection of BFDV on nest swabs was strongly associated with the infection status of parents in each nest box and with the timing of breeding. During breeding, boxes occupied by BFDV-positive birds were significantly more likely to have BFDV-positive nest swabs than boxes occupied by BFDV-negative birds; nest swabs tested BFDV-positive in 80% (28.4–99.5) of nests with parental antigen excretion, 66.7% (9.4–99.2) of nests occupied by parents with BFDV-positive cloacal swabs and 66.7% (22.3–95.7) of nests occupied by parents with BFDV–positive blood. 0% (0–52.2) of nests with BFDV–positive nestlings had BFDV–positive nest swabs. Across all boxes occupied by BFDV-positive birds (parents or nestlings), no nest swabs were BFDV–positive before breeding, 36.4% (95% CI 10.9–69.2) were positive during breeding and 9.1% (0.2–41.3) remained positive after breeding. BFDV was present on nest swabs for up to 3.7 months. Our study provides novel insights into the potential role of nest cavities and other fomites in indirect transmission of BFDV, and possibly other pathogens, and offers a non-invasive method for surveillance of pathogens in wild bird populations.