The MIT Adaptive Reconnaissance Golay-3 Optical Satellite (ARGOS) is a wide-angle Fizeau interferometer spacecraft testbed. Designing a space-based interferometer, which requires such high tolerances on pointing and alignment for its apertures, presents unique multidisciplinary challenges in the areas of structural dynamics, controls and multi-aperture phasing active optics. In meeting these challenges, emphasis is placed on modularity in spacecraft subsystems and optics as a means of allowing expandability and upgradeability. For the interferometer to function properly, unique methods of coherent wave front sensing are developed and used for error detection in control of the Fast Steering Mirrors (FSMs). The space environment is simulated by floating ARGOS on a frictionless air-bearing that allows it to track fast moving satellites such as the International Space Station (ISS), planets or point stars. A System Identification is performed on ARGOS to determine its dynamic properties and to design optimal controllers for the Attitude Control System (ACS). ACS sensors include an electronic compass with a 2-axis tip-tilt sensor, a viewfinder camera with centroiding algorithm, and a 3-axis rate gyroscope. Nonlinear, quaternionbased control is employed using reaction wheels as the spacecraft's actuators.