A method of patterning surfaces for liquid-crystal alignment using a polarization holography exposure on a linear photopolymerizable polymer alignment layer is demonstrated. Three configurations are demonstrated which include registered planar-periodic surface boundary conditions on both surfaces ͑true polarization gratings͒, planar-periodic and uniform planary surface boundary conditions, and planar-periodic and homeotropic boundary conditions. Two-dimensional polarization gratings are also demonstrated by orientating planar-periodic alignment layers orthogonally. Passive polarization gratings are also demonstrated using reactive mesogens to capture the periodic order indefinitely. The underlying structure of the configuration is discussed, including the nature of their switching transition ͑threshold or thresholdless͒, for all three configurations. A simple phenomenological model is presented to describe the Freedericksz transition for the registered planar-periodic boundary condition case.