In high-power laser facilities, the application of a traditional wavefront control method is limited under the influence of a continuous phase plate (CPP). In order to obtain a satisfactory far-field intensity distribution at the target of the beamline with the CPP, a novel deformable mirror (DM) resolution-matching-based two-stage wavefront sensorless adaptive optics method is proposed and demonstrated. The principles of the DM resolution-matching method and two-stage wavefront sensorless adaptive optics method are introduced, respectively. Based on the numerical model, the matching relationship between the actuator space of the DM and the spatial period of the CPP is investigated. By using the resolution-matched DM, the feasibility of the two-stage wavefront sensorless adaptive optics method is numerically and experimentally verified. Both the numerical and the experimental results show that the presented DM resolution-matching-based two-stage wavefront sensorless adaptive optics method could achieve the target focal spot control under the influence of the CPP, and the profile and the intensity uniformity of the corrected focal spot are optimized close to the designed ideal focal spot.