This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms; in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element's depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array's main beam.