2020
DOI: 10.1016/j.compgeo.2020.103556
|View full text |Cite
|
Sign up to set email alerts
|

Bearing capacity of shallow foundation under cyclic load on cohesive soil

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
1
1

Relationship

1
5

Authors

Journals

citations
Cited by 16 publications
(2 citation statements)
references
References 37 publications
0
2
0
Order By: Relevance
“…The use of numerical methods and the progress of computational geomechanics have allowed access to the practical calculation of more sophisticated bearing capacity problems involving: (a) anisotropic rock masses (in [26] a solution in some simple cases is indicated and in [27] another solution for piles in rock masses is developed but in both cases the solutions do not depend on the width); (b) the presence of a water table in the rock [28], the shape of the foundation in rock masses [29], and roughness of the rock [30] where the results do not incorporate the size foundation; (c) the interaction with other structural elements such as tunnels [31] where it is not possible to know the influence of the dimension of the foundation; (d) bilayer rock under the footing [32] that does not depend on the width of footing; (e) the dynamic response of the foundation that offer solutions that do not depend on the geometric characteristics of the analyzed foundation (in [33] and [34] cases without self-weight of the ground are considered, [35] a particular application is considered but it is not possible to obtain the influence of the foundation size). In addition, new calculation methods have been developed in the study of piloted foundations in non-cohesive soil [36], cohesive soil [37], and considering inclined load [38] but using a linear failure criterion not representative of the behavior of a rock masses.…”
Section: Introductionmentioning
confidence: 99%
“…The use of numerical methods and the progress of computational geomechanics have allowed access to the practical calculation of more sophisticated bearing capacity problems involving: (a) anisotropic rock masses (in [26] a solution in some simple cases is indicated and in [27] another solution for piles in rock masses is developed but in both cases the solutions do not depend on the width); (b) the presence of a water table in the rock [28], the shape of the foundation in rock masses [29], and roughness of the rock [30] where the results do not incorporate the size foundation; (c) the interaction with other structural elements such as tunnels [31] where it is not possible to know the influence of the dimension of the foundation; (d) bilayer rock under the footing [32] that does not depend on the width of footing; (e) the dynamic response of the foundation that offer solutions that do not depend on the geometric characteristics of the analyzed foundation (in [33] and [34] cases without self-weight of the ground are considered, [35] a particular application is considered but it is not possible to obtain the influence of the foundation size). In addition, new calculation methods have been developed in the study of piloted foundations in non-cohesive soil [36], cohesive soil [37], and considering inclined load [38] but using a linear failure criterion not representative of the behavior of a rock masses.…”
Section: Introductionmentioning
confidence: 99%
“…In static calculations, the weight of the soil is of decisive importance if the situation is analyzed in the long term and added to the analytical solution as an empirical term. Similarly, for the study of the dynamic bearing capacity of a foundation in the long term, it is necessary to incorporate the own weight of the soil and complete some of the solutions provided in the bibliography that do not consider this factor [45].…”
Section: Introductionmentioning
confidence: 99%