Abstract. To detect rolling element bearing defects, many researches have been focused on Motor Current Signal Analysis (MCSA) using spectral analysis and wavelet transform. This paper presents a new approach for rolling element bearings diagnosis without slip estimation, based on the wavelet packet decomposition (WPD) and the Hilbert transform. Specifically, the Hilbert transform first extracts the envelope of the motor current signal, which contains bearings fault-related frequency information. Subsequently, the envelope signal is adaptively decomposed into a number of frequency bands by the WPD algorithm. Two criteria based on the energy and correlation analyses have been investigated to automate the frequency band selection. Experimental studies have confirmed that the proposed approach is effective in diagnosing rolling element bearing faults for improved induction motor condition monitoring and damage assessment.