2024
DOI: 10.3390/app14072706
|View full text |Cite
|
Sign up to set email alerts
|

Bearing Fault Diagnosis Based on Image Information Fusion and Vision Transformer Transfer Learning Model

Zichen Zhang,
Jing Li,
Chaozhi Cai
et al.

Abstract: In order to improve the accuracy of bearing fault diagnosis under a small sample, variable load, and noise conditions, a new fault diagnosis method based on an image information fusion and Vision Transformer (ViT) transfer learning model is proposed in this paper. Firstly, the method applies continuous wavelet transform (CWT), Gramian angular summation field (GASF), and Gramian angular difference field (GADF) to the time series data, and generates three grayscale images. Then, the generated three grayscale ima… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 37 publications
0
0
0
Order By: Relevance