Abstract:This paper proposes a fault detection method for low-speed rolling element bearings of an induction motor using acoustic emission signals and histogram modeling. The proposed method performs envelop modeling of the histogram of normalized fault signals. It then extracts and selects significant features of each fault using partial autocorrelation coefficients and distance evaluation technique, respectively. Finally, using the extracted features as inputs, the support vector regression (SVR) classifies bearing's… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.