Traditional fault detection methods in acoustic signal feature extraction of rolling bearings often make the signal denoising process complex due to low signal-to-noise ratio and weak fault features, making this method difficult to meet real-time requirements. Therefore, a fault detection model based on Fast-Renoriented SIFT feature extraction is proposed, which can quickly extract a large number of features from the original signal without the need for noise reduction processing and can effectively improve the efficiency and accuracy of fault detection. At the same time, to adapt to the fault detection of rolling bearings under multiple working conditions, this study also proposes an adaptive extended word bag model that combines local kurtosis and local 2-dimensional information entropy features, improving the adaptability and flexibility of the new model. It obtained a 100% overall recognition rate and a fault detection time of no more than 0.5 seconds in a 5-fold cross-validation experiment, verifying the excellent recognition accuracy, stability, and operational efficiency of the detection model. Its recognition accuracy in the multi-working condition rolling bearing fault detection experiment was above 97%, which was improved by about 21.25% compared to the traditional word bag model and had significant advantages in fault recognition accuracy and computational efficiency.