Wood is susceptible to swelling deformation and decay fungi due to moisture adsorption that originates from the dynamic nanopores of the cell wall and the abundant hydroxyl groups in wood components. This study employed as a modifier maleic anhydride (MAn), with the help of acetone as solvent, to diffuse into the wood cell wall, bulk nanopores, and further chemically bond to the hydroxyl groups of wood components, reducing the numbers of free hydroxyl groups and weakening the diffusion of water molecules into the wood cell wall. The derived MAn-bulked wood, compared to the control wood, presented a reduction in water absorptivity (RWA) of ~23% as well as an anti-swelling efficiency (ASE) of ~39% after immersion in water for 228 h, and showed an improvement in decay resistance of 81.42% against white-rot fungus and 69.79% against brown-rot fungus, respectively. The method of combined cell wall bulking and hydroxyl group bonding could effectively improve the dimensional stability and decay resistance with lower doses of modifier, providing a new strategy for wood durability improvement.