SUMMARY
Considering the deterioration of steel properties by temperature increase and the importance of the influence of connection behavior on the behavior of steel structures, we find that the exact understanding of the behavior of a specific steel connection in fire as well as the information about the effect of fire on the principal constitutive characteristics of the connection is necessary for safe design against fire. Thus, in this paper, the behavior of welded angle connections is studied at elevated temperatures using the abaqus finite element software. Steel members and connection components are considered to behave nonlinearly; the degradation of steel properties with increasing temperature is considered according to EC3, BS5950 recommendations. The results of finite element and experimental tests conducted on welded angle connections are compared, and the obtained failure modes and moment–rotation–temperature characteristics are in good agreement with those associated with the experimental tests. In the following, since the knowledge about moment–temperature–rotation behavior of a specific connection is needed for a fire‐resistant design, these properties are accurately determined, and finally, the effect of some parameters such as the moment applied on beam, change of column axial force and change of beam shear force on the stiffness of these connections at elevated temperatures is determined. Copyright © 2011 John Wiley & Sons, Ltd.