The dynamical behavior of ethylene and ethane confined inside single-walled carbon nanotubes has been studied using Molecular Dynamics and a fully atomistic force field. Simulations were conducted at 300 K in a broad range of molecular densities, 0.026 mol·L −1 < ρ < 15.751 mol·L −1 (C 2 H 4 ) and 0.011 mol·L −1 < ρ < 14.055 mol·L −1 (C 2 H 6 ), and were oriented towards the determination of bulk and confined phase self-diffusion coefficients. In the infinite time limit, Fickian self-diffusion is the dominant mode of transport for the bulk fluids. Upon confinement, there is a density threshold (ρ = 5.5 mol·L −1 ) below which we observe a mixed mode of transport, with contributions from Fickian and ballistic diffusion. Nanotube topology seems to have only a small influence on the confined fluids' dynamical properties; instead density (loading capacity) assumes the dominant role. In all cases studied and at a given density, the diffusivities of ethylene are larger than those of ethane, although the difference is relatively minor. We note the collapse of self-diffusivities obtained from the bulk fluids and confined phases into a unique single trend. These results suggest that it might be possible to infer dynamical properties of confined fluids from the knowledge of their bulk phase densities.