2023
DOI: 10.1002/num.23051
|View full text |Cite
|
Sign up to set email alerts
|

Behavior of Lagrange‐Galerkin solutions to the Navier‐Stokes problem for small time increment

Abstract: We consider two kinds of numerical quadrature formulas of Gauss type and Newton‐Cotes type, which are required in the real computation of Lagrange–Galerkin scheme for the Navier–Stokes problem. The Lagrange–Galerkin scheme with numerical quadrature, which has been used practically but not fully analyzed, is proved to be convergent at least for Gauss type quadrature under a condition on the time increment. As for the scheme with Newton‐Cotes type quadrature, it has more smooth convergent property than that of G… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?