Vehicular ad hoc networks (VANETs) have earned a gigantic consideration in the recent era. Wide deployment of VANETs for enhancing traffic safety, traffic management, and assisting drivers through elegant transportation system is facing several research challenges that need to be addressed. One of the crucial issues consists of the design of scalable routing algorithms that are robust to rapid topology changes and frequent link disconnections caused by the high mobility of vehicles. In this article, first of all, we give a detailed technical analysis, comparison, and drawbacks of the existing state-of-the-art routing protocols. Then, we propose a novel routing scheme called a Reliable Path Selection and Packet Forwarding Routing Protocol (RPSPF). The novelty of our protocol comes from the fact that firstly it establishes an optimal route for vehicles to send packets towards their respective destinations by considering connectivity and the shortest optimal distance based on multiple intersections. Secondly, it uses a novel reliable packet forwarding technique in-between intersections that avoids packet loss while forwarding packet due to the occurrence of sudden link ruptures. The performance of the protocol is assessed through computer simulations. Simulation outcomes specify the gains of the proposed routing scheme as compared to the earlier significant protocols like GSR (Geographic Source Routing), GPSR (Greedy Perimeter Stateless Routing), E-GyTAR (Enhanced Greedy Traffic Aware Routing), and TFOR (Traffic Flow-Oriented Routing) in terms of routing metrics such as delivery ratio, end-to-end delay, and routing overhead.