The reality gap-the discrepancy between reality and simulationis a critical issue in the off-line automatic design of control software for robot swarms, as well as for single robots. It is understood that the reality gap manifests itself as a drop in performance: when control software generated in simulation is ported to physical robots, the performance observed is often disappointing compared with the one obtained in simulation. In this paper, we investigate whether, to observe the effects of the reality gap, it is necessary to assume that the control software is designed in a context that is simpler than the one in which it is evaluated. In a first experiment, we show that a performance drop may be observed also in an artificial, simulation-only reality gap: control software is generated on the basis of a simulation model and assessed on a second one. We will call this second model a pseudo-reality. We selected the simulation model to be used as a pseudo-reality by trial and error, so as to qualitatively replicate previously published observations made in experiments with physical robots. The results show that a performance drop occurs even if we can exclude that pseudo-reality is more complex than the simulation model used for the design. In a second experiment, we eliminate the trial-and-error selection of the first experiment by evaluating control software across multiple pseudo-realities, which are sampled around the original simulation model used for the design. The results of the second experiment confirm those of the first one and show that they do not depend on the specific pseudo-reality we previously selected by trial and error. Moreover, they suggest that one could use multiple pseudo-realities to evaluate automatic design methods and, from this simulation-only evaluation, infer their robustness to the reality gap. The experiments were conceived by the two authors and performed by AL. The article was drafted by AL and revised by the two authors. The research was directed by MB.