Eco-toxicity profiles for commonly used disinfectants were lacking. Available traditional toxicity techniques have some limitations (assessments and ethical issues). Behaviour toxicology is a promising research area towards early warning and non-invasive approaches. We studied the potential eco-toxic effects of sodium hypochlorite (NaOCl) on the swimming behaviour of zebrafish. Zebrafish were exposed to different concentrations (Treatment I, Treatment II, Treatment III, and Treatment IV) of NaOCl for 360 h. Recovery study (144 h) was conducted for NaOCl treatment groups. The swimming behaviour of zebrafish was quantified efficiently using an online monitoring system (OMS). OMS dataset was processed for determination of behavioural differences by MATLAB and SPSS. Compared to the control group, the swimming strength of zebrafish under NaOCl treatments declined significantly (
p
< 0.001). Avoidance behaviour has occurred on zebrafish under NaOCl exposure periods. Furthermore, NaOCl toxicity also adjusted circadian rhythms on zebrafish. Zebrafish swimming strength was significantly (
p
< 0.001) improved under-recovery periods. Moreover, normal diurnal patterns have occurred. NaOCl could cause behavioural abnormalities in non-target organisms. Continuous exposure to common disinfectants could cause external and internal stress on non-target organisms, resulting in behavioural changes and circadian rhythm adjustments. Continuous changes in behavioural and circadian rhythms might reduce organisms’ fitness and adaptation capacity. This study highlights (1) the importance of computer-based toxicity assessments, and (2) swimming behaviour is an early warning biomarker for eco-toxicity studies.
Graphic Abstract
Supplementary Information
The online version contains supplementary material available at 10.1007/s11356-021-18333-1.