b s t r a c tAtomoxetine is a non-stimulant medication with sustained benefit throughout the day, and is a useful pharmacologic treatment option for young adults with Attention-Deficit/Hyperactivity Disorder (ADHD). It is difficult to determine, however, those patients for whom atomoxetine will be both effective and advantageous. Patients may need to take the medication for several weeks before therapeutic benefit is apparent, so a biomarker that could predict atomoxetine effectiveness early in the course of treatment could be clinically useful. There has been increased interest in the study of thalamocortical oscillatory activity using quantitative electroencephalography (qEEG) as a biomarker in ADHD. In this study, we investigated qEEG absolute power, relative power, and cordance, which have been shown to predict response to reuptake inhibitor antidepressants in Major Depressive Disorder (MDD), as potential predictors of response to atomoxetine. Forty-four young adults with ADHD (ages 18e30) enrolled in a multisite, double-blind placebo-controlled study of the effectiveness of atomoxetine and underwent serial qEEG recordings at pretreatment baseline and one week after the start of medication. qEEG measures were calculated from a subset of the sample (N ¼ 29) that provided useable qEEG recordings. Left temporoparietal cordance in the theta frequency band after one week of treatment was associated with ADHD symptom improvement and quality of life measured at 12 weeks in atomoxetine-treated subjects, but not in those treated with placebo. Neither absolute nor relative power measures selectively predicted improvement in medication-treated subjects. Measuring theta cordance after one week of treatment could be useful in predicting atomoxetine treatment response in adult ADHD.