There is increasing evidence that high magnetic fields interact with the vestibular system of humans and rodents. In rats, exposure to high magnetic fields of 7T or above induces locomotor circling and leads to a conditioned taste aversion if paired with a novel taste. Sex differences in the behavioral responses to magnetic field exposure have been found, such that female rats show more locomotor circling and enhanced conditioned taste aversion compared to male rats. To determine if estrogen modulates the neural response to high magnetic fields, c-Fos expression after 14T magnetic field exposure was compared in ovariectomized rats and ovariectomized rats with estradiol replacement. Compared to sham exposure, magnetic field exposure induced significantly more c-Fos positive cells in the nucleus of the solitary tract and the parabrachial, medial vestibular, prepositus, and supragenualis nuclei. Furthermore, there was a significant asymmetry in c-Fos induction between sides of the brainstem in several regions. In ovariectomized rats, there was more c-Fos expressed in the right side compared to left side in the locus coeruleus and parabrachial, superior vestibular, and supragenualis nuclei; less expression in the right compared to left side of the medial vestibular; and no asymmetry in the prepositus nucleus and the nucleus of the solitary tract. Chronic estradiol treatment modulated the neural response in some regions: less c-Fos was induced in the superior vestibular nucleus and locus coeruleus after estradiol replacement; estradiol treatment eliminated the asymmetry of c-Fos expression in the locus coeruleus and supragenualis nucleus, created an asymmetry in the prepositus nucleus and reversed the asymmetry in the parabrachial nucleus. These results suggest that ovarian steroids may mediate sex differences in the behavioral responses to magnetic field exposure at the level of visceral and vestibular nuclei of the brainstem.