Body fragmentation, in some animal groups, is a mechanism for survival and asexual reproduction. Lumbriculus variegatus (Mu¨ller, 1774), an aquatic oligochaete worm, is capable of regenerating into complete individuals from small body fragments following injury and reproduces primarily by asexual reproduction. Few studies have determined the cellular mechanisms that underlie fragmentation, either regenerative or asexual. We utilized boric acid treatment, which blocks regeneration of segments in amputated fragments and blocks architomic fission during asexual reproduction, to investigate mechanistic relationships and differences between these two modes of development. Neural morphallaxis, involving changes in sensory fields and giant fiber conduction, was detected in amputated fragments in the absence of segmental regeneration. Furthermore, neural morphallactic changes occurred as a result of developmental mechanisms of asexual reproduction, even when architomy was prevented. These results show that fragmentation in L. variegatus, during injury or asexual reproduction, employs developmental and morphallactic processes that can be mechanistically dissociated by boric acid exposure. In regeneration following injury, compensatory morphallaxis occurred in response to fragmentation. In contrast, anticipatory morphallaxis was induced in preparation for fragmentation during asexual reproduction. Thus, various forms of regeneration in this lumbriculid worm can be activated independently and in different developmental contexts.