Foamed concrete (400 kg/m3) was prepared through a physical foaming method using ordinary Portland cement (42.5R), vegetable protein foaming agent, fly ash, and glazed hollow beads (GHB, K46) as raw materials. The performance of cement paste as well as the structure and distribution of air voids was characterized by rheometry, SEM, and XRD analyses with imaging software. The effects of GHBs on the compressive strength and thermal conductivity of the foamed concrete sample were also explored. Results show that the proportion of 50–400 μm air voids, average air-void diameter, 28 d compressive strength, and thermal conductivity of the test sample mixed with 2.4 wt% GHBs are 94.44%, 182.10 μm, 2.39 MPa, and 0.0936 w/(m·k), respectively. Excessive amount of GHBs (>2.4 wt%) increases the amount of air voids with diameter smaller than 50 μm in the hardened foamed concrete as well as the degree of open porosity. Moreover, the proportion of 50–400 μm air voids, average air-void diameter, 28 d compressive strength, and thermal conductivity of the sample mixed with 4.0 wt% GHBs are 88.54%, 140.50 μm, 2.05 MPa, and 0.0907 w/(m·k), respectively.